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INFLUENCE OF THE ATRCRAFT SHAPE ON THE WAVE PATTERN

by A. Busemann (University of Colorado)

i

I. Introduction. The sonic boom (or bang) as a side effect

of flight with supersonic speed was observed by surprise and was
finally attributed to the simple straight flight itself only after
all other hofe plausibie explanationé could not be supported any '
lonéer. The lesson.to be learned from this strangé history is the
fact that the supersonic aircraft has indeed a surprisingly low
attenuation of its pressure field with distance. Being used to an
dttenuation proporfional to the minus second power of the distance in

subsonic flight, it was hard to accept that at supersonic flight

only a minus one half power of the lateral distance remains. Furthermore

in a stratified atmosphere with density changes following an
exponential law of the altitude, another influence has to be considered
by the fact, that the disturbance velocities created at high altitudes
diminish on the way toward the ground, whereas the accompanying
pressures have to do the opposite, each taking half of thé burden to

adapt the disturbances to the changing elastic modulus of the denser

air. As long as the original disturbance is due to invariant velocities,

i.e., by pulling the aircraft fuselage through the surrounding air--
the greatvadvantage to move in lower density at high altitudes is
only half lost.by the increasing pressures on the vertical descent
to the eartbvsurface. If, however; the heavier-than-air craft has
to create lift with its wings, the weight distributed over the'wing
area represents an invariant pressure regardless of altitude. Now
the acoustical pressﬁre increase with half the ratio of the demsity
increase is a powerful rival to the meager pressure relief with

distance from the airplane. The minus one half poWer of the distance



is strongest very early and diminishes fast with distance, while the
exponential law stays constant. Thus in a finite distance equél to

the scale height of the atmosphere of about 28,000 feet any additional
climbing to a higher altitude is not only reaching a larger area of
listenersfon the ground but does not reduce the‘ﬁreésure footprint

for the people directly underneath the flight path in the air. Only
the help of nature to distort the footprint (by a faster propagation

of the higher pressures and a slower propagation of the lower pressures
within the disturbance) spreads the footprint over a larger distance
with reduced pressure differences under the action of shock waves.

This relief by shock waves is not limited to an optimal altitude and

is the only advantége left after climbing above 28,000 feet. But

when shocks themselves are regarded as undesirable acoustical phenomena
for our ears by exciting the slumbering high frequencies which serve
commonly as danger signals, the heip of nature is rejected and the
aforementioned reasons to reduce the altitude get even more sﬁpport

as a means to avoid large distortions of the footprint, the causes

for shockwaves.

II. Methods of Flow Representation. The methods to study the

far field pressures with respect to sonic booms are supported by the
fact that there exists already a very low relative pressure of the
order of one thousandth of the atmosphere setting the borderline
between permissible and not permissible disturbances. Up to such a
limit the linearized flow representation goes a long way to furnish
the far field pressures with a satisfactory accuracy. The actual body
shapes responsible for the far field pattern may require a higher
order correction especially for axially symmetric cross sections
because of the much stronger disturbances in the near field. Such
corrections necessary for the actual design of the aircraft may,
however, be disregarded in the game to reduce the sonic boom as

long as all significant constraints, i.e., to use an airplane of



given length and of a given average cross section'distribution.§f 
positive definite size over this length, are met.

The integration of a simplified differential equation very far
out has, of course, its own dangers; but the only significant negligence,
which would disappear in restricted pressure amplitudes, is the fact
that the wave speed of positive disturbance pressures is slightly
higher, of negative disturbance pressures slightly lower than the
speed of sound for infinitesimal disturbances. The effects of this
self-propulsion of any given linearized footprint can be handled
separately simply by reading the final results with a slanted ordinate
axis, which advances every pressure toward the front of the wave
proportional to its deviation from the static pressure. As is
visible in water waves at the beaches and used by surf board riders
for pleasure, too much advance of the higher wave portions leads to
overhanging cliffs and requires an adjustment by a steep front at
that position, where the overhang and the undercut areas equalize.
This simple graphical equalization--well known from the van der Waals
two phase formation in liquifying vapors--is the only repéir requiréd
on the linearized footprint to produce the true wave pattern for thg
observer on the ground. That the reflection on a solid ground
doubles all disturbance pressures without time delay, while a reflected
wave with some delay would be audible at higher elevation is another
element to consider for interpreting the far field pressure disturbance

correctly.

ITT. Sources and Sinks in Three~Dimensional Space. To describe

the flow field around moving bodies in three dimensions, the method

of distributing sources and sinks inside the body while artificially
extending the flow to fill the complete interior is used successfully
from the time of the airships flying in incompressible fluid and is
still the most common approach at all speeds. While for incompressible
flow, where superposition is absolutely correct, the source and sink
method is universally valid, at compressible flow it has to be

restricted to slender bodies. Such restriction is irrelevant as long
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as the aircraft of minimum drag.(and not a reéntering spacecraft)
is foremost the object of our investigations.

The two basic laws of fluid motion past streamlined bodies
are vanishing divergence and vanishing curl appliéd bbtﬁ'to the
velocity field for incompressible flow. In two dimensions both these
laws have an equal amount of information and théir first integrals,
the stream function or the flow potential are on the same level, as
their complex combination in conformal mapping reveals. For boundary
conditions the streamlines are very often supetiof. In threé’
dimensions the vanishing curl rates twice as high as the vanishing
diﬁergence and the flow potential és‘its first integral has no
comparable alternate; thus it is the velocity potential which always
serves as the first step toward any desired solution. Working with
sources and sinks .as the preferred singularities instead of vortices,
puts, however, more emphasis on the flux density of the flow which,
at least in steady flow, has vanishing divergence outside the body.
To be able to work with the most appropriate tools in three-
dimensional flow, we have to learn to "speak" in velocity potentials
and to "think" in flow densities at the same time. Such language is
developed for many vector fields with concrete point singulérities.
The most common and the earlieét in history is perhaps the gravity
field around a single point mass. Here the gravity pofential is found
propertional to the invérse distance 1l/r from the center of the
attracting mass G. The proper value of the potential energ& fcr‘any

unit mass entering the field is given by:'

: G
§ = T hre (L)

The actual force £ felt on the unit mass is the (negative!) increase

of the potential energy under radial motion:.

P:-g_‘g,.._g_. )

472




Working with potentials but thinking in fluxes is indicated by the
flux density f, when G 1is considered as the total flux which must
be equally spread over all concentric spheres, each having the
surface 4wr2. The mass -G 1is in this case a sink for the inwardly
directed flux densities f. The results for a gravity fiéld being a
f;rce field of nothing but attracting positive masses will change
some sign, when being adapted to repelling electric charges of equal
sign or attracting charges of opposite sign. Furthermore, the
velocity potential which has no significance in the form of potential
energy, furnishes by convention the field vector by taking its
positive gradient (instead of the negative as in equation (2)). It
is, therefore, the form not the signs of equations (1) and (2)

which sets the pattern. A still more disturbing fact in compressible
flow is the difference between the velocity vector U and the flux
density vector £ = @U. Both are equal in direction; but our
experience in the delaval nozzle indicates that they are only
proportional at very low speeds. When nearing the velocity of

sound, the flux density reaches its maximum value at the speed of
sound, while it shrinks back to the lower values at supersonic

speeds in spite of the steady increase of the velocity toward the
finite maximum velocity for which the nozzle is designed.

The law of superposition on a parallel flow is only valid
without adaptation in incompressible flow. Compressible flow allows
for small disturbances to be superimposed and requires a slight
adaptation to the Mach number of the given parallel flow. Let U
be the velocity of the main parallel flow with ag the velocity of
sound and pg, the static pressure far away from any disturbance.
The coordinate system xX,y,z may be chosen to coincide on its
origin with the point source of the flux intensity S and with the
x axis parallel to the undisturbed flow. While the isotropy of the
source flow in all directions may be lost at larger Mach numbers,

the axial symmetry with respect to the x axis should be preserved.



Such distortion of the potential spheres to ellipsoides of constant
potential is suggested by the form of the linearized differential
equation for the superimposed potential § :

VEY's ¥ e -
(1 M)%.fz +'§-§ZZ+ %éfz_,o -

But the new potential should also be normalized by a special power
of (1 - Mz) as a factor to indicate always the same mass flux §
independent of the Mach number of the flow. The normalized equation

is given by

¢p = = S i 3 .
' AT o of X7+ Q=M (gt 29 4)

The disturbance velocities u,v,w superimposed on the main flow U
are the partial derivatives of @ with respect to x,y,z:. But the

disturbance flux densities fx’ £

vs and fz superimposed on the

main flux density F = poU are @, times the disturbance velocities
only in the new directions fy and fz‘ In the main direction the
example of the deLaval nozzle indicates a necessary factor (1 - NZ)
timwes Q@ to take care of the changé in density by a change in the
length of the total velocity vector U+ u to F + fX. The corre-

sponding equations for the superimposed flux densities are, therefore:

= - 2 w.:}-g
e ¢ M)Q X

d?3
i

(3
&

35 (5)
= owd
= g2

The actual differentiations, if carried out on the source potential of

equa:ion (4), furnish the following components:
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The source flow character is immediately visible by the radial flux
directions away from the source point and the intensities indicate

at subsonic speeds a reduced flow by (1 =~ MZ) along the x axis
compensated by increases with ,{I‘j‘ﬁ?‘ alongbthe y and the 2z axes.

The total source strength is found to be invariant, though degenerating

toward a complete lateral discharge for the Mach number one.

IV. Supersonic Source Behavior in Three Dimensions. The factors

(1 - MZ) in the equations (4) and (6) for the three dimensional
source flow appear very harmless while they render the source strength
invariant for any subsonic Mach number. There is no complete change
to imaginary values at supersonic speeds except for the "neutral"
region outside the Mach cones, where there should be no discharge of
a supersonic source in the first place. To carry over the symmetry
with respect to + x direction from subsonic flow is a possible but
not a logical choice, since the only enforceable discharge of any
supersonic source is within the aft cone, not the forward cone,
neither half of the source intensity in each of them. A small
improvement, by human decision not by analytiéal continuation, is

to restrict the discharge to x 3y 0 while doubling the discharge
rate and by using real parts of the complex potentials only, Such
revised source strength distributed over any chosen region with the
coordinates § , ¥ , and ¥ inside the body walls furnishes the

following integral equation for the resulting Qelocity potential:

A ¥ (.2, 5y didndy
P, Y,E) = ﬁ;j 27 G ‘/(xef)"w (Mz_,)[(w)lﬂz« ;’)’j“ 03




The change to the lower case s(f,q,f) from S  indicates the-restrictiop
to smaller distributed sources in order to satisfy the small disturbance
réquirement. This potential proposed by wvon Karman in the,thittiés
satisfies the linearized differential equatioﬁ,'ié adépfedAto the
logical dependence régions of superior, inferior and neutral with
respect to the Mach cones and is readjusted to the given downstreém
source intensity; In this general form, the'Velocitieé deriﬁedrfrom
aﬁy single source do not seem alarming. If,.however, the»fiux
vinpensities are studied, the fact that all.sourcés have changed to
a negative flux density inside the Mach cone, direcéédAtoward the
source points, ahd have a not integfable total flux of.ingreésing'
negative value when_apﬁroaching the cone walls,,will"bé of a very -
alarmihg nature. ‘ | R
The only reassuring feature can be found in the fact, that an

array of equal sources spread out along the z axis from 1nf1n1ty to
infinity has to simulate the two dimensional source in the x and y
plane. Such a supersonic source has already a very peculiar behavior:
it sprays half its intensity along the upper side of the Mach wedge
and the other half along the lower side, leaving the inside of the
downstréam Mach wedge completely undisturbed. Anybody who tries to
achieve this_result with an array of shower nozzles with an axially
symmetyic spray wiil be happy to learn the rules of this game'by
imltatlng the von Karman source in equation (7). Firstly, t he single
source touches the wedge only along one generatrix, where no other
source can reach. The total intensity at this generatrix must be
equal to half the source strength, to fulfilllthe local requiréﬁent
now or néver. Having an axially symmetric character, the positive .
source strength along the total outer Mach- cone is infinltely too high.
The compensatlon can be sucked back only in a special manner of
negative flux inside the Mach cone exactly as the finite intensities
indicate in equation (7). Thus the creditability of the equatioh )]
is easily established as soon as the strange behavior of the two

dimensional source is recognized. When superpositioning is equivalent



with averaging, a highly extreme, but positive only, distribution can
only be the average of an even more extreme distribution of positive
and negative contributions. ‘

| When the spotlight is put on the strange behavior of three
dimeﬁsional sources: to spray too much along the Mach cone and to
suck it all back‘except for the little positive flux indicated by the
source strength, the historical fact, that the sonic booﬁ had much
more intensity than anybody had ex.pec:ted,9 will appear more justified.
Of course, the two dimensional flight would give no relief with
distance in the linearized approach; but the attenuation with the
negative one half power of the distance in three dimensions means
less than the two dimensional flux along a cone surface. Such
attenuation results from the fact, that a source intensity spread
over a finite length in flight direction will quickly alleviate for
the near field. In the far field the felative size of the source
spread compared to the distance reduces with distance and this causes

the attenuation with less than the minus first power of the distance.

V. The Relation Between the Body Shape and the Far Field

Pressure.  The actual far field pressure and the body shape can be
related by the equation (7) when the source distribution results from
the body cross section A(i) along the axis of the body. This
relation, though thé inverse of a given source distribution, is also
affected by the odd behavior of the three dimensional sources, to
overspray their intensity and to suck the surplus back. For very
thin bodies the task to fill the inside with a simulated parallel
flow of @DUA(i') becomes so predominant thét the necessary source

strength s(Y ) along the axis is sufficiently represented by

5(‘{) = QMU%? = QWUAI(?) (8)
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If this rather simple relation is used in equation (7) for axially
symmetric bodies as é starting point, the .potential reduces to a
single integral along the axis as follows:

. ) N
Px,y,2) = - S 2;} A(?)j‘é ey (9)
2T -)*~ (M3 1)+ =)

Such expression is much too discontinuous along the Mach cone as to
allow the necessary partial differentiations with respect to x, v,

and =z for the Velocity components. To achieve reasonable pressures
it is essential to impress on the designing engineer the idéa to make
his task, the choiée of A(?‘), smoother and smoother. He should watch
the existence and limitations of higher derivatives if so desired.

Such demand is expressed by the process of integrating the kernel
function by parts with respect to § and to differentiate cdrre—

spondingly the area distribution. Two such'steps may show the idea:

j‘ UA"(ﬂ cosh™ X=F 4 dy

Plx,y. 2) = ﬁ}’(ﬁ-#) (9a)

and
X
8

= ~ | TAD [ Y
Plxy,2) = *k;i) (r-f. )mj‘rﬁ;izﬁ s-'for—-fﬁ»(w-i)(-f*ﬂ‘) cf;?(%)

M)y 2)

gty

The pressure disturbance is in first approximation depending on
any velocity component parallel to the main flow U. Such pressure
disturbance may be compared tb the static pressure py of the
undisturbed flow which is for perfect gases also depending upon the
density Qe » the vélocity of sound a, , and the ratio of the

specific heats c¢_ and c_ with ¥ = ¢ /c :
. P v P Vv
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hp = ‘QMU%%

(10)

(11)

[
]
af=—
s
gﬁu

The relative pressure disturbance is now given by (9b) differentiated
with respect to x (or by (9a) differentiated one more time on A,

which is von Karman's trick to get there fast):
X

ap = MM e g dg (12)
Peo 2w T (4 )

Bt 4

For finding the pressure of the sonic boom, the inverse cosh function
is only used for very small distances § in the direction x and

very large distances h din y or z; but the distance x, to hear

the pressure has to be large enough to be inside the Mach cone which
starts at the tip of the aircraft. The proper scale of the noise
locations would be better served when the distance X beyond the
Mach cone from the tip on the ground is used with X = x - JMZ - 1 h.
The inverse sinh is for small values equal to the argument, while

the relation holds: sinh2 = cosh2 - 1. The cosh*l can thus be
converted for small deviations of its argument from 1 dinto an

algebraic equivalent:

# ) — |
bp ~ T[4 j-—-—m"" 1 gy . T i
“:‘5% ~ 2w jAL?] (ML) W ‘ J Rw?(w-a {" A ) j? (13)

Equation 13 shows explicitly the attenuation of the far field
pressure with the inverse half power of the distance h, while the
other expressions indicate an otherwise frozen pressure footprint as

soon as the cross section distribution A(g’) ~is assumed.
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VI. The Influence of a Stratified Atmosphere. The linear

differential equation (3) expects a homogeneous atmosphere and- results
as such in equation (13).£6r a lateral observer at a distance h.
Actually the flight takes place in vertical direction and the stratified
atmosphere is a major factor when assessing the intensity of the
created boom. The adaptation of the former result to the dénsity
changes at almost constant temperature is not difficult to indicate.
The acoustical response or the impedance of the stratified atmosphere
can be investigafed by assuming finite changes in successive layers.
Their discontinuities are able to reflect a part of the incoming
signal and to let another part of the signal go on. A softer medium
reflects partially with reversed pressures, a harder medium with
pressures of the same sign. - The resulting change of the continuing
wave inside the new layer is the sum of the incoming and the reflected
pressufes. The adaptation of the surface velocities can be achieved
by the fact, that the reflected Wavé,'going in the opposite direction,
has the reverse relations between the pressures and the velocities
compared to both the incoming and the continuing waves. The extreme
values of infinitely hard or soft reveal the arithmetic progress of
double or nothing in either pressure or velocity, but fhe small local
changes result in a geometric progress relation, half the impedance'
change chgrged to the pressure increase and half to tHe velocity
decrease in a logarithmic scale. All continuous changes can be handled
in this manner, discontinuous changes give finite intensities of the
reflections and would be more desirable to attenuate the continuing
wave. The only other question is about any rereflections which will
also be created and may follow a short signal after a while or may
modify a longer signal under its own rereflections. The exponentially
stratified atmosphere with a large scale height can be released from
this rereflection trouble since they are either too small or too late
to modify the original signal. According to the remaining adaptation
of the original signal according to the square root of the pressure

changes in the atmosphere, equation (13) can be corrected for both the
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graduallchange of the static pressure in the atmosphere with p,

at the altitude h and P at the surface of the earth.with
P . ( h)
2 = exp(- 4 (14)
P PATH

Takiﬁg also into account the doubling of the wavetpressufe on the
solid surface of the earth with AP = ZAP-, the effective vinfl\:zence
of the two effects is a factor 2 and a remaining relief of the
square root of pg /P since the original relief of moving a body

in lower density is half lost on the way back to earth by adapting

the disturbance gradually to denser air:

. X
AP _ xM3T agef B AN N T
S T up( ihﬁ‘ AGYX-7 ds (15)

Both functions of h are indicating relief when an aircraft body is
moved at higher altitude h, though even their combined effect is

much less than would be desirable.

. VII. Relations Between Lift and Pressure. Lift on wings is

generally explained by bound vortices inside the wings and by trailing
vortices in the flow direction. It seems, thereforé, that the whole
development of singularities and their fields has to be repeated for
vortices instead of sources and sinks. Fortunately this is not
necessary since from two-dimensional incompressible flow the ideﬁtity
of a pair of vortices with a pair of sources and sinks normal to
fheir direction is well known. The trailing vortices following the
flow direction create their field normal to the x agis and, therefore
are unaffected in this identity by compressibility. Since the 1lift-
contribution of the bound vortex is the dipole moment of its trailing
vortex pair multiplied with Q?,U, the potential equation for

distributed sources (7) can be changed to a supexsohic normalized
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potential for any lift distribution 1(§;?,f). It is only necessary

to integrate the potential of the source from any given position

to infinity in x direction as an array of sources and then to differentiéﬁe
the result with respect fo ¥ to create source and sink dipoles

normal to the trailing vortices. The former source distribution

s(f,?,f) must be replaced in the new potential by f({,?,y)/U.

Integrations with respect to § are already used in equations (9a)

and (9b), the only new operation is the differentiation»with reSpeét

to ‘f and gives:

i 2) =_~._m’ Ko (ene-p)  dedpdg
8 2 Q“U*J("'f)z“ (-] (- 0)? +m [(‘a‘?)z N (va’ﬂ' (16)

For the far field the distribution of the lift in y diréction over the
wing span is immaterial and the distribution in z &irection with
dihedral or biplanes méy‘be studied separately; thus the simple

case of a wing in the x,y plane has a certain lift contribution

‘ﬂ(i‘) counted along the x axis, which can be integrated up to the
total 1ift L(f) with A(§) = L'(§) and the simplified lift

potential reads:

Lg) -Pz dy _

‘-P(x,’ﬂ,!) T e — e
umz‘ﬂ'ecgu .‘]}(x’f)l""(Mz'D(‘ja“’i’) 'L‘az+z1] (17)

There are similar integrations by parts available for the lift

distribution as for the area distribution of the body to allow the
differentiation with respect to X, y, or z without degenerations when

any component of the disturbance velocities u, v, and w are needed.

X
I U L LT L“(?') ] (x=85)* ’
Gy, 9= SM 'Z""["_ew T e (Do) 1 cif (17a)

Y
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Since for the pressure distribution ohly the-componént u  is of
interest and can be derived from the potential by one more derivation
of L, the>equation.(17a)fwithout difficult dérivatibns.léads to the
disturbance pressure &p = - Q“U‘u:- R |
.X R
ap 5 (g Jocot e
P - 27 ps (BN L (18)

-0

In (18) both sides are divided by Pw tO demonstraté the close
relations between the pressure due to lift and thé ﬁresSure due to.
body shape in equation (12).° As the equation (13) shows in its first
part,tthe far field approxiﬁations for both body and 1ift’érelonly
different in the constants outside the integral and permit the

second simplification of (13) for thé lift: |

X
Ap . WA X e de
ap - Hro U OYX- 7 s

(19)"

With such close resemblance the adaptation to the~strétified étﬁosphefe
is easy to perform. The doubling by reflection on the ground remains
tﬁe same, Only the fact that the lift was glven by weight regardless
of the pressure pg of the .altitude, adds the ratio  pg /P in the
denominator and reverses, therefore, the sign of the half power -
exp(~h/2H) to exp(h/ZH)

- L e[ ST
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The final equation for the 1lift footprint by the linearized theory

is very similar to the equation (15) with'reSPect'to ;he integral
over the design parameters A respectively L. The difference is,
‘however, that A must disappear when the total aircraft length is
used, while the 1ift remains finite and has to equal the weight.

An analbéy is more directly between the body nose and the total lift.
Body nose and lift are thus rivals with respect to the permiésible
pressure footprint, while body tail and lift reduce their pressures
when superimposed. AThe altitude dependency of the footprint pressure
is for 1ift a limited attenuation reached at h = H or about 28,000
feet. TFor the body. part of the pressure'footprint any higher altitude
is still benmeficial for the pressure directly under the flight path,
though, of course, Spreading laterally the permissible pressure

proportional to the altitude.

VIII. Formation of Shock Waves. The footprint of the linearized

theory both for body shape and for lift is integrated toward the far
field beyond its proper'validity. A reduced pressure disturbance
wouldibe necessary to avoid such error. We may, however, investigate
the combination of a first small pressure plateau wide-enough to let a
second pressure wave ride on it piggyback. There are two reasons to
make the second wave ride faster on this plateau than on théAun—
disturbed air. The pfessure step Ap creating the.first,plateau

has provided along the plateau a forward velocity u which adds to
the sécond(wave speed. There is also .a slight temperafure increase
connected with the formation of a pressure plateau Ap which for
alllperfect gases is indicative of a higher speed of sound. The

wave speed increment AW is, therefore, composed of two contributions
u and Aa both of them simply related to the pressure step Ap compared
with the static pressure p,,:,’f‘.qaa.i and with the originai wave speed'

Qey. The disturbance velocity u is simply _AR. while the
ngagg .
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isentropical temperature change is the )’; power of the pressure ehange
and the velocity of sound is the square root of the temperature change.

he relative increagse of the wave speed is, therefore:

AW _  w Aa ) z_i)éa = Xl Ao
e o —— K R -— o ] T
ay a, * Qo (i! 28/ Po 23 P

(21)
The result from this investigation is that the different pressure
levels have an excess wave speed proportional to thelr own pressure
‘level. The dlfferent phases of the footprint except for ‘the near
field have'a similar history on the way down, the total proéess of any
elevated preséure on the ground can be integrated and is in the integral
still proportional to the pressure on the ground. A eomon ratio m/bf
exits therefore and can easily be applied to rectify the positions of
the linearized footprint pressures. Since the sound waves»propagate
perpendicular to the Mach wave, the descent path of the wave is larger
than the altitude h by l/cee® with & the Mach angle difined by sin«sl/M.
The visible advance toward the front - AX on the ground is also ].erger .
.than- the actual progress achieved by excess wave speed; since the
advanced Mach wave front is inclined and needs only -AX sin« progress
to appear as-AX measured along the ground,With these geometrical
factors, the length = AXof the advancing waves must be integrated
aecording to the wave strength divided by the static pressure at every

distance z over the whole altitude 'range h on the descent dz of the wave:

p wii  pAR ' . oy -
AX o B MEow o orn-2\de _ MM § ert (YhRE)
' 7 ze | P = w2 Hon ~
. ~ 2H w2y \
- (22)
The error function starts linear but never exceeds the value unity.
For moderate altitudes h of one to three scale heights H the error
function over its argument and the factor YW /2 may be»app‘roximat'e_d as
another exponential function diminishing with the argu ment =- h/8H
making the whole bracket an exponential with 3h/8H just for the sake

of simplicity, This approximation reads:

_AX _ h Y+l
N e T V::"M‘: exp 20 31{ (22a)
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To compensate for the progress of positive pressure disturbénces

toward the airplane tip or beyond, which means & negative shift in X
as the equations 22 and 22a indicate, the ordinate axis can be slanted
in the positive direction to interprete both the footprints for body
shape (15) and lift (20) correctly} A complete aircraft is, of course;

a supérposition of body and wing and is the sum of (15) and (20)

before the proper shock waves can be found under the positive slope

of equation (22a)@dth reversed sign) and by the equal area exchange

left and right from every shock wave. If the permissible disturbance
pressure is one thousandth of the atmospheric pressure and the altitude
is 8H/3 = 70,000 feet, the progress -AX for a Mach number of 2.5 and
¥= 1.4 amounts to 450 feet or too much more than the airc¢raft length.
Coming down to 35,000 feet altitude reduces the length ~AX to 135 feet
which is still too large a portion of aircraft length for the nose.

It is obvious that the formation of shocks can easily lengthen for
flights at high altitudes the distance between the two boomsAto multiples
of the aircraft length. The opposite attempt, to avoid shocks, spends
large portions of the aircraft length just for softening the footprint.
All under the assumption that a disturbance pressure of one thousandth

of the atmosphere is feasible and permissible.

IX. Applications. The wave patterns created by aircraft

bodies and wings are given in intefgral form in equations (15) andv(20).
The physical input is such a well behaved parabolanfi;?“that the design
inpuf A''"" or L''"!' does not have to be smooth, but can be concentrated
on very few centers where their integrals correspond to discontinuities
in the next higher function AA" or AL" respectively. The oﬁly visible
mark in the pressure curve on such places is the infinite slope of any
new parabola on its apex which can be neglected when the summation is
used as a fast substitute for exact integration; but if it is real, it.
does indicate a shock on positive rises wherever the design is actually
made with sudden changes in the curvature of A (f) or L 6{). To see
whether such changes in curvature are permissible and in which order

of magnitude they may cause shocks, a conical tip of the body and the.
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and-#ke tip of a delta wing with constant load may be investigated
under the condition that the parabolic pressure of the linearized
theory is corrected to a shock wave with a parabolic continuatibn
according to equation (22a) and that the shock wave intensity is

just one thousandth of the atmosphere on the ground. In the equations
(15) and (20) the quantities in question on the tip <f:oare AA" (0)

and AL" (0)/P; both are in this form dimensionless, while the factor
4§:Epfinds its partner in {H to nondimensionalize the whole equations.
It is possible to find the proper order of magnitude by identifying

- AX from equation (22a) with X - 0 = X in the other equations, which
indicates the point on the parabola that moves to the tip Mach cone;
but thé exact shock wave moves somewhat ahead of the tip Mach cone and
requires-AX = 4/3 X, when X identifies eXactly the location of the 
pressure at the top of the shock wave along the linearized parabola.
By matching m from equation (22a) with ﬁ(_/? either from ‘
(15) or (20) and by inserting the relative disturbance pressures AP/P
the permissible value, the unknown quantitieé AAY(0) i‘espectively _AL"(O)
will be fixed:

==

16K = AR 353 ) _M* P AR wAMA eph - yX
_38K = W/ * = AE M- 2
“\fq T T %Y Yweay exp I SH P ¥ M2 AAY 26~

h (23)
and

AR B¥+) M 3y AP i [}
ot exp 2h = v exp(~-2
J P 8 % Ty P?H P %’{T'E(Aﬂ’/?) P( 2“) (24)

These relations furnish:

AA"E) = -‘iél? 20y M7
‘ 44 Msisx(w P, o H (23a)
and

ALY F _ i h

) P M W b |’ (24a)
The actual area distribution or lift distribution permissible with respect
to the assumed shock strength of 10-3 atm with P=1 atm ;4”2“'0, 1b/ £t%
for M= 2.5

1]
Y= AA(0) &2 (5 ¢?
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and i -,
Lip= AE@ e o7 %a”‘?(‘-%g\%x) J |

- (26)
Both these équations demonstrate, that the modefﬁ'Supersonic transpdrt
projects are in the proper order of magnitude; but they also indicate’
how difficult the design would be, if the shock strength has to be
reduced to 107* atmospheres. A cross section of 200 £e.2 s ha%ly
reached in a conical tip of §=200 ft. length according to (25), and
500,000 1b. weight require the length of more than 120.ft. in a delta
wing in (26), unless the tail section of the fuselage can compensate

as a sink the source character of the lift toward the ground.

Fig 1. Slanted Ordinate Axis Fig 2. Corrected Pressure
Diagram
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